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INVESTIGATION OF THE IMPACT O F  HIGH-FINENESS-RATIO 

PROJECTILES I N T O  THICK TARGETS 

By C. Robert Nysmith and B. Pat Denardo 
Ames Research Center 

SUMMARY 

Tests  were conducted t o  determine the penetrat ion of high-f ineness-rat io  
The p ro jec t i l e s  were copper rods with diame- proJectiles into t h i ck  t a rge t s .  

t e r s  of 0.0044 inch, 0.0029 inch, 0.0014 inch, and 0.0007 inch, and iengths  of 
0.200 inch, 0.300 inch, 0.500 inch, 0.700 inch, and 0.750 inch. 
r a t i o s  ranged from 69 t o  1000. Targets were 1/2-inch- and 5/8-inch-diameter 201'7- 
T4 aluminum spheres.  
second. P r o j e c t i l e  i n c l i n a t i o n  angles were varied from end-on t o  broadside. 

Fineness 

Impacts occurred at a nominal ve loc i ty  of 15,000 f e e t  per 

A p a r t i a l l y  t h e o r e t i c a l  equation which cor re la tes  t he  e f f e c t s  of length,  
diameter, and i n c l i n a t i o n  on t h e  maximum depth of penetrat ion was found. 

The e f f e c t  of p r o j e c t i l e  curvature w a s  invest igated f o r  0.002pinch- 
diameter copper p r o j e c t i l e s  of f ineness  r a t i o  259. 
curvature,  R = 0.3 inch,  R = 1.0 inch, and R = 3.0 inches,  and th ree  d i f f e r e n t  
o r i en ta t ions  f o r  each curvature were t e s t e d .  
reduced m a x i m u m  pene t ra t ion  a t  zero inc l ina t ion ,  t h i s  reduced penetrat ion was 
maintained approximately constant over a la rge  range of p r o j e c t i l e  inc l ina-  
t i o n s  so t h a t  a t  l a rge  inc l ina t ions ,  t h e  curved p r o j e c t i l e s  penetrated more 
deeply than t h e  s t r a i g h t  p r o j e c t i l e s .  

Three d i f f e r e n t  r a d i i  of 

Although curvature d r a s t i c a l l y  
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INTROlXTCTION 

A program of research d i rec ted  toward determining t h e  damage produced by 

I n  t h e  f i r s t  phase of t h i s  inves t i -  
t he  impact of high-fineness-ratio p r o j e c t i l e s  upon s t r u c t u r e s  is being con- 
ducted at  t h e  NASA Ames Research Center. 
gat ion ( r e f .  l), t h e  e f f e c t  of p r o j e c t i l e  angle of i n c l i n a t i o n  upon depth of 
pene t ra t ion  was presented f o r  0.0023-inch-diameter copper p r o j e c t i l e s  with a 
f ineness  r a t i o  of 300, impacting aluminum t a r g e t s  a t  15,000 f e e t  per  second. 
Two types of c r a t e r s  were observed, depending upon t h e  i n c l i n a t i o n  of t h e  pro- 
j e c t i l e  - deep and narrow f o r  near end-on impacts and shallow and long f o r  
impacts a t  l a rge  inc l ina t ions .  
c r a t e r s  was very abrupt and, f o r  t h e  spec i f ic  p r o j e c t i l e s  inves t iga ted ,  
occurred within t h e  inc l ina t ion  range from 4' t o  5'. 
a l s o  appeared t o  d r a s t i c a l l y  reduce t h e  maximum penetrat ion of end-on-type 
impacts but t o  have very l i t t l e  e f f e c t  upon the  pene t ra t ion  at  l a rge  
inc l ina t ions .  

The t r a n s i t i o n  from end-on t o  broadside-type 

The p r o j e c t i l e  curvature 



.I 

The purpose of t h e  present  r epor t  i s  t o  extend t h e  da ta  t o  cover a much 
wider range of  p r o j e c t i l e  f ineness  r a t i o s  and, consequently, t o  determine t h e  e 
e f f e c t  o f  p r o j e c t i l e  diameter and length  upon depth of pene t ra t ion  f o r  i nc l ined  
p r o j e c t i l e s .  Data r e l a t i n g  p r o j e c t i l e  rad ius  of  curvature  t o  depth of penetra- 
t i o n  and angle  of i n c l i n a t i o n  are a l s o  presented and compared with t h a t  f o r  
s t r a i g h t  p r o j e c t i l e s  with t h e  same f ineness  r a t i o .  

TEST PROCEDURE 

The tes t s  were conducted by f i r i n g  l/2-inch- and 5/8-inch-diameter 2017-Tk 
aluminum spheres from a l ight-gas  gun i n t o  high-fineness-ratio copper rods sus- 
pended on nylon s t rands  d i r e c t l y  i n  t h e  path of t h e  model. 
w i l l  be r e fe r r ed  t o  as p r o j e c t i l e s  and t h e  spheres as t a r g e t s  even though i n  
these  t e s t s ,  it was t h e  t a r g e t  t h a t  w a s  i n  motion. 
mounted i n  nylon sabots  during launch and t h e  sabot and t a r g e t  were aerodynam- 
i c a l l y  separated before  impact with t h e  p r o j e c t i l e  occurred. 
t h e  t a r g e t s  were aerodynamically decelerated and recovered i n  a polystyrene- 
foam and cotton-waste catcher  loca ted  a t  t h e  end of t h e  f l i g h t  t e s t  chamber. 
The t a r g e t s  were then  sect ioned and microscopically examined t o  determine t h e  
impact damage. More complete d e t a i l s  of  t h e  t e s t  apparatus  and se tup  as w e l l  
as t h e  techniques used are described i n  reference 1. 

The copper rods 

The sphere t a r g e t s  were 

A f t e r  impact, 

The copper p r o j e c t i l e s  var ied  i n  length from 0.200 t o  0.750 inch with 
diameters of 0.0007 inch, 0.0014 inch, 0.0029 inch, and 0.0044 inch (f ineness  
r a t i o s  from 69 t o  1000). 
r a t i o  of 259 were curved t o  r a d i i  of  0.5 inch, 1 .0  inch, 3.0 inches,  and w 
( s t r a i g h t ) .  
were t e s t ed ,  as w i l l  be  discussed la te r .  

The 0.0029-inch-diameter p r o j e c t i l e s  with a f ineness  

For each of t h e  curved p r o j e c t i l e s ,  t h r e e  d i f f e r e n t  o r i en ta t ions  

DISCUSSION OF RESULTS 

Effec t  of P r o j e c t i l e  Fineness Ratio 
and Angle of Inc l ina t ion  

The angle  of p r o j e c t i l e  i nc l ina t ion ,  deyined as t h e  angle between t h e  
p r o j e c t i l e  longi tudina l  a x i s  and t h e  f l i g h t  t r a j e c t o r y ,  i s  independent of t h e  
obl iqui ty ,  defined as t h e  angle  between t h e  t r a j e c t o r y  and t h e  rad ius  vector 
of t h e  t a rge t  a t  t h e  poin t  of impact (a  d e f i n i t i o n  cons is ten t  with t h e  usua l  
de f in i t i on  of ob l iqu i ty  f o r  impact work). 
measured from t h e  t a r g e t  surface p a r a l l e l  t o  t h e  t r a j e c t o r y  and thus  i s  not  
dependent upon t a r g e t  ob l iqu i ty .  

The maximum depth of pene t ra t ion  i s  

The penet ra t ion  of high-fineness-ratio copper p r o j e c t i l e s  i n t o  aluminum 
t a r g e t s  is presented i n  f igu re  1. The penetrat ion,  i n  u n i t s  of p r o j e c t i l e  
length,  is p l o t t e d  versus t h e  i n c l i n a t i o n  angle,  i n  degrees. The da ta  shown 
represent impacts by p r o j e c t i l e s  with diameters of 0.0044, 0.0029, 0.0014, and 
0.0007 inch, and f ineness  r a t i o s  of 69, 103, 1-70, 259, 536, 714, and 1000. 
The abscissa  covers i n c l i n a t i o n  angles t o  300 s ince  t h i s  i s  t h e  t e s t  range 
where most of t h e  da ta  were acquired.  Flagged symbols i nd ica t e  t h a t  t h e  tar- 
ge ts  were  completely pene t ra ted  by t h e  p r o j e c t i l e  so  t h a t  t h e  corresponding 
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penet ra t ions  are probably deeper than shown. 
t i e s  near 13,000 f e e t  per  second and no veloci ty  adjustments were made. 

A l l  impacts occurred a t  veloci-  

During t h e  data-reduction process it was noted t h a t  t he  measured depth of 
pene t ra t ion  w a s  very s e n s i t i v e  t o  t h e  accuracy of t h e  crater-sect ioning pro- 
cess .  I f  a t a r g e t  w a s  not p e r f e c t l y  cross-sectioned, t h e  pene t ra t ion  measure- 
ments and c r a t e r  p r o f i l e  appearance were ser ious ly  impaired. I f ,  on t h e  o ther  
hand, t h e  c r a t e r  was accura te ly  sectioned, t he  c r a t e r  p r o f i l e  w a s  qu i t e  dis-  
t i n c t  and c r a t e r  depth measurements w e r e  accordingly more accurate.  
t a i n  of t h e  da t a  of figure 1 are more r e l i a b l e  than  others .  
t a r g e t s  su f fe red  d i s t i n c t  damage from t h e  nylon s t rands  used t o  support t h e  
t e s t  p r o j e c t i l e  ( f i g .  2). 
gives t h e  p ro jec t i l e - t a rge t  or ie i ikt lon a t  izpact., microscopic measurements of 
t h e  d is tance  between t h e  damage from adjacent s t rands  enable p r o j e c t i l e  i n c l i -  
nat ions t o  be re-evaluated t o  within about 10 minutes of a rc .  The da ta  of f ig -  
ure  1, represent ing t h e  more r e l i a b l e  measurements, a r e  ind ica ted  by t h e  
closed symbols. 

Thus, cer- 
In addi t ion,  many 

When t h e  t a r g e t  i s  posi t ioned so t h a t  t h i s  damage 

The da ta  f o r  end-on impacts i n  figure 1 show t h a t  t he re  i s  more s c a t t e r  
than m i g h t  be expected and t h a t  t he  penetrat ions are f requent ly  l e s s  than  
those f o r  s l i g h t l y  inc l ined  impacts. These considerations ind ica t e  t h a t  these  
impacts are q u i t e  s ens i t i ve  t o  imperfections i n  t h e  test  setup. This r e s u l t  
i nd ica t e s  t h a t  per fec t  end-on impacts might produce c r a t e r s  considerably 
deeper than  any t h a t  were observed. 

When t h e  end-on impact of high-fineness-ratio p r o j e c t i l e s  i s  compared t o  

The pene- 
t h a t  of t h e  constant dens i ty  jets considered i n  shaped-charge je t  theory,  it 
i s  c l e a r  t h a t  t h e  two p r o j e c t i l e s  a r e  i n  many respec ts  equivalent.  
t r a t i o n  of high-fineness-ratio p r o j e c t i l e s  s t r i k i n g  end-on the re fo re  may be 
assumed t o  be given by t h e  shaped-charge j e t  equation. The penet ra t ion  for-  
mula derived by appl ica t ion  of shaped-charge j e t  theory i n  reference 2, under 
t h e  assumptions t h a t  (a )  t h e  impact pressures a r e  l a rge  compared t o  t h e  
s t rength  of t h e  t a r g e t  and j e t ,  ( b )  a s teady-state  pene t ra t ion  rate i s  reached 
almost instantaneously upon impact, and ( e )  t he  pene t ra t ion  s tops  as soon as 
t h e  last  j e t  p a r t i c l e  has s t ruck  t h e  t a r g e t ,  i s  

p = 1 ,  

where p is  t h e  penetrat ion,  1 is  t h e  p r o j e c t i l e  length,  pp i s  t h e  densi ty  
of t h e  p r o j e c t i l e ,  and pT This formula states 
t h a t  t h e  pene t ra t ion  i s  independent of ve loc i ty  and p r o j e c t i l e  diameter, and 
depends only on t h e  dens i t i e s  of t h e  t a r g e t  and p r o j e c t i l e  and t h e  length  of 
t h e  p r o j e c t i l e .  The p r o j e c t i l e  diameter influences only t h e  diameter of t h e  
c r a t e r  produced. 

is  the  dens i ty  of t h e  t a r g e t .  

For a p r o j e c t i l e  with a given f ineness  r a t i o ,  as t h e  i n c l i n a t i o n  i s  
increased, some of t h e  p r o j e c t i l e  length no longer fa l l s  i n t o  t h e  c r a t e r  pro- 
duced by t h e  p r o j e c t i l e  leading element. This "extra" length cannot contrib- 
u t e  t o  t h e  c r a t e r ' s  m a x i m u m  depth. As  t h e  inc l ina t ion  increases  even f u r t h e r ,  
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\ less of t he  p r o j e c t i l e  length fa l l s  i n t o  t h e  o r i g i n a l  c r a t e r  and penet ra t ion ,  
decreases systematical ly  as i n c l i n a t i o n  increases .  

Moreover, a t  a given angle of i n c l i n a t i o n  (o ther  than end-on) and f o r  a 
pa r t i cu la r  p r o j e c t i l e  length,  as t h e  f ineness  r a t i o  increases ,  l e s s  p r o j e c t i l e  
length can f a l l  i n to  t h e  o r i g i n a l  c r a t e r  by v i r t u e  of t h e  c r a t e r ' s  smaller 
diameter, and penet ra t ion  thus decreases.  I n  addi t ion ,  f o r  a constant diame- 
t e r  p r o j e c t i l e ,  increasing t h e  p r o j e c t i l e  length adds nothing t o  t h e  m a x i m u m  
c ra t e r  depth i f  t h e  angle i s  such t h a t  t h e  add i t iona l  length f a l l s  outs ide t h e  
o r i g i n a l  c r a t e r .  The longer length does decrease the  value of t h e  pene t ra t ion  
t o  length r a t i o ,  however. Consequently, regard less  of t h e  changes i n  projec- 
t i l e  dimensions necessary t o  increase t h e  f ineness  r a t i o ,  t h e  pene t ra t ion  t o  
length r a t i o  decreases with increase i n  f ineness  r a t i o  
nation g rea t e r  than zero. 

The data of f igu re  1 a r e  f i t t e d  by t h e  equation 

at any angle of i n c l i -  

( 2 )  

where 8 is  t h e  inc l ina t ion  angle i n  radians.  The ca lcu la ted  curves a r e  i n  
qua l i t a t ive  agreement with t h e  da ta .  

Consider t h e  case where t h e  p r o j e c t i l e  diameter i s  held constant and t h e  
length i s  allowed t o  vary. 
increased, t h e  cont r ibu t ion  of length t o  pene t ra t ion  must decrease.  U l t i -  
mately, a t  broadside impact, t h e  length must have l i t t l e ,  i f  any, e f f e c t  on 
penetrat ion.  Curves on a p l o t  of pene t ra t ion  versus i n c l i n a t i o n  would be 
expected t o  merge a t  t h a t  i nc l ina t ion  where length becomes i n e f f e c t i v e .  Fig- 
ure  3 compares curves ca lcu la ted  from equation ( 2 )  with a number of data  
poin ts .  The curves represent  a fa i r  f i t  t o  t h e  l imi t ed  da ta  shown. The 
e f f e c t  of length on penet ra t ion  at l a rge  i n c l i n a t i o n  angles as given by equa- 
t i o n  ( 2 )  i s  seen t o  be a small one and i s  t h e  reverse  of what would be 
expected s ince  t h e  shor t  p r o j e c t i l e  i s  ca lcu la ted  t o  pene t ra te  deeper than t h e  
long one. (Compare, e .g . ,  t h e  curves f o r  0.730-inch and 0.300-inch lengths  
above 8 = 3.2O.) This defect  i n  t h e  equation is  not a ser ious  one, however, 
s ince  t o  a f i r s t  order of approximation, t h e  pene t ra t ions  of t h e  two lengths  
a r e  equal, as they should be a t  l a rge  inc l ina t ions .  However, because of t h i s  
defec t ,  t h e  a p p l i c a b i l i t y  of equation (2)  i s  a r b i t r a r i l y  l imi ted  t o  inc l ina-  
t i o n s  l e s s  than those of these  t e s t s ,  t h a t  i s ,  t o  inc l ina t ion  angles l e s s  than 
30'. 

I n t u i t i v e l y ,  as t h e  angle of i n c l i n a t i o n  i s  

Figure 4 i s  a p lo t  of t h e  pene t ra t ion  t o  length r a t i o  versus t h e  
inc l ina t ion  angle f o r  t h e  complete i n c l i n a t i o n  range. The segments of t h e  
curves from 0' t o  30' i nc l ina t ion  a r e  ca lcu la ted  from equation ( 2 )  using t h e  
fineness r a t i o s  of t h e  p r o j e c t i l e s  of f i gu res  1 and 3. Several  broadside 
impact data poin ts  are p l o t t e d  and t h e  ca lcu la ted  curves f o r  p r o j e c t i l e s  with 
these  fineness r a t i o s  a r e  extended t o  90' ( s o l i d  curves) .  
t h e  broadside impact da ta  poin ts  a r e  as much as 40 percent lower than  pre- 
d i c t ed  by equation ( 2 ) .  

It can be seen t h a t  

The measured penet ra t ions  correspond c lose ly  t o  t h e  
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. penet ra t ions  r e s u l t i n g  from t h e  impact of spheres, of t h e  same diameters as 
those of t h e  high-fineness-ratio p r o j e c t i l e s  t e s t e d ,  as given by t h e  Ames pen- 
e t r a t i o n  equation (see ref.  3) 

- -  I, 2 - 2.28 (+) (27'3(z7'3 (3) 

where V is  t h e  impact ve loc i ty  and c i s  t h e  speed of sound i n  t h e  t a r g e t  
material, t h e  ve loc i ty  of propagation of a plane longi tudina l  wave i n  a slen- 
der  pr ismatic  bar .  Since t h e  ava i lab le  broadside impact data can be expressed 
by equation ( 3) t h i s  equation was used t o  ca l cu la t e  t he  pene t ra t ion  t o  length 
r a t i o s  f o r  broadside impact f o r  t h e  r emin ing  f ineness  r a t i o s  of figure 4. 
The dashed curves covering t h e  i n c l i n a t i o n  range from 30' t o  90' were obtained 
by simply f a i r i n g  curves f o r  each p r o j e c t i l e  f ineness  r a t i o  t o  obtain a smooth 
t r a n s i t i o n  from t h e  curves a t  30' t o  t h e  corresponding penet ra t ion  t o  length 
r a t i o s  a t  goo. 

Effec t  of P r o j e c t i l e  Curvature 

The t h r e e  p r o j e c t i l e  o r i en ta t ions  invest igated f o r  each curvature are 
i l l u s t r a t e d  i n  sketch (a) .  
measured r e l a t i v e  t o  t h e  chord of t h e  curved p r o j e c t i l e .  The angle,  a, 
remains constant f o r  any one p r o j e c t i l e  curvature.  Clear ly ,  t h e  p r o j e c t i l e  

They are denoted by i n c l i n a t i o n  angle a r b i t r a r i l y  

Zero inclination e= a12 

Sketch (a )  

or i en ta t ion  t h a t  would produce t h e  maximum penet ra t ion  i s  included within t h e  
o r i en ta t ion  range of t h i s  program. A s  t h e  o r i en ta t ion  of t h e  curved projec- 
t i l e  ranges from zero inc l ina t ion  t o  0 = u, t h e  angle t h a t  t h e  tangent t o  t h e  
leading end of t h e  p r o j e c t i l e  makes with t h e  t a r g e t  normal va r i e s  through an 
i n c l i n a t i o n  range of 43' f o r  t h e  0.5-inch radius  of curvature ,  21.5' f o r  t h e  
1.0-inch rad ius  of curvature,  and 7' f o r  t h e  3.0-inch radius  of curvature .  
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\ The penet ra t ion  da ta  f o r  t h e  curved p r o j e c t i l e s  are presented i n  figure'%. 
P lo t t ed  i s  t h e  pene t ra t ion  t o  length r a t i o  as a func t ion  of angle  of inc l ina-  
t i o n .  The th ree  o r i en ta t ions  f o r  each rad ius  of  curvature  a r e  p l o t t e d  a t  t h e i r  
respect ive angles of i nc l ina t ion ,  as def ined above. The curve shown i n  f i g -  
ure  5 represents  t h e  pene t ra t ion  da ta  of t h e  corresponding s t r a i g h t  p r o j e c t i l e  
with the  same f ineness  r a t i o  from f igu re  4.  

Comparing t h e  m a x i m u m  pene t ra t ion  of t h e  curved p r o j e c t i l e s  t o  t h e  maximum 
penet ra t ion  of t h e  s t r a i g h t  p r o j e c t i l e  shows t h a t  curvature  d r a s t i c a l l y  reduces 
t h e  m a x i m u m  pene t ra t ion .  The m a x i m u m  pene t ra t ion  of t h e  curved p r o j e c t i l e s  i n  
these  t e s t s  corresponds t o  t h e  pene t ra t ion  of a s t r a i g h t  p r o j e c t i l e  of t h e  same 
f ineness  r a t i o  impacting a t  an i n c l i n a t i o n  angle  of about 3.5'. 
hand, f i gu re  5 shows t h a t  p r o j e c t i l e  curvature  tends t o  maintain pene t ra t ion  at 
a high l e v e l  over a l a r g e  inc l ina t ion  range. For curved p r o j e c t i l e s ,  t h e  pene- 
t r a t i o n  remains e s s e n t i a l l y  constant throughout t h e  incl inat ion-angle  range 
t e s t e d .  A s  t h e  i n c l i n a t i o n  increases  even f u r t h e r ,  it seems reasonable t o  
expect t h a t  t h e  pene t ra t ion  w i l l  be a func t ion  of t h e  l a r g e r  of t h e  angles  t h a t  
t h e  tangent t o  e i t h e r  end of t h e  p r o j e c t i l e  makes with t h e  t a r g e t  normal. 

On t h e  o ther  

When t h e  a t t i t u d e  becomes t h a t  shown i n  sketch ( b ) ,  t h e  minimum 
penet ra t ions  of  curved p r o j e c t i l e s  with r a d i i  
of curvature  of 0.5 inch, 1 .0  inch, and 
3.0 inches should correspond t o  t h a t  of equal- 
f ineness- ra t io  s t r a i g h t  p r o j e c t i l e s  impacting 
a t  a n  i n c l i n a t i o n  of &To,  68.5', and 83O, 
respec t ive ly .  Penet ra t ion  values  f o r  t hese  
inc l ina t ions  have been taken from t h e  curve of 
f i g u r e  4 and are p l o t t e d  as t h e  f i l l e d  symbols 
t o  represent  t h e  curved p r o j e c t i l e s  impacting Target 

Sketch (b) a t  900 i n c l i n a t i o n .  

F ina l ly ,  it i s  c l e a r  t h a t  t h e  r e s u l t s  o f  t h i s  s e r i e s  of t es t s  must no 
longer hold when t h e  rad ius  of curvature i s  s o  l a rge  t h a t  a l l  o f  t h e  p r o j e c t i l e  
f a l l s  in to  the c r a t e r  made by t h e  p r o j e c t i l e  lead ing  element o r  when t h e  rad ius  
of curvature i s  so small t h a t  t h e  p r o j e c t i l e  begins t o  overlap i t s e l f .  No 
attempt has  been made t o  study these  l i m i t i n g  curvatures ,  however. 

Ames Research Center 
National Aeronautics and Space Administration 

M o f f e t t  F i e ld ,  C a l i f . ,  Oct. 28, 1-96? 
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